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(57) ABSTRACT

A system, method and computer program product for imple-
menting a thin hypervisor. The thin hypervisor does not have
any association with a VM. The thin hypervisor serves as a
wrapper over hardware capabilities of a processor. The pro-
cessor has privileged low-level capabilities EPT VIX, AMD
V and the ARM has virtualization technology. In order to use
processor hardware capabilities and receiving root privileges,
the system operates in a “super user” mode. The VM operates
in a VM environment with kernel privileges in a user mode. A
super user space is created in a safe mode. A user space
application (or a process) is created. A user space virtualiza-
tion framework library is used. These entities are separated by
a user space and a kernel space. A thin hypervisor is imple-
mented in the user space.
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1
THIN HYPERVISOR FOR NATIVE
EXECUTION OF UNSAFE CODE

BACKGROUND OF THE INVENTION

1. Field of Invention

The present invention relates to virtualization technology,
and, more particularly to a thin hypervisor for native execu-
tion of an unsafe code.

2. Background Art

With Virtual Machine (VM) technology, a user can create
and run multiple operating environments on a Host server at
the same time. Each Virtual Machine requires its own guest
operating system (GOS) and can run applications indepen-
dently.

Each VM acts as a separate execution environment, which
reduces the risk and allows developers to quickly re-create
different operating system (OS) configurations or compare
versions of applications designed for different OS’s for as
long as the integrity of data used by each of the VMs is
provided. Generally, a Virtual Machine is an environment that
is launched on a particular processor (a host) that is running a
host operating system (HOS) and the VM runs the Guest OS.

A hypervisor provides a layer between the computing,
storage, and networking hardware and the software that runs
on it. Using hypervisor-assisted virtualization requires a
privileged hypervisor kernel module running on a protected
mode ring 0, managing root mode and handling virtual
machine control structures (VMCS) for VMs. However,
applications sold through Mac App Store, App Store, Google
Play, Windows Market are not allowed to have protected
mode ring 0 and root privileges and to use personal drivers.
These limitations prevent publishing of virtualization appli-
cations.

Many users would like to have products that support vir-
tualization to have the benefit of multiple guest OSs running
in parallel on the same host computer. The processor privi-
leges for entering into root mode required for hardware
assisted virtualization are not allowed by software distribu-
tion rules. Applications deployed from online stores (such
Mac App Store, App Store, Google Play, Windows Market)
run in an isolated environment (so called “sandbox”) having
very limited system functions access. System API calls are
controlled by a host operating system. Only limited standard-
ized API functions calls (frameworks), which are explicitly
declared as compatible with sandboxed environment, are
allowed in applications deployed from the stores. The appli-
cations must be registered and distributed without the drivers
and using ring 0 and root privileges.

Accordingly, there is a need in the art for special standard-
ized thin hypervisor for using hardware virtualization capa-
bilities of modern processors with Mac App Store, App Store,
Google Play, Windows Market and similar products.

SUMMARY OF THE INVENTION

The present invention is directed to virtualization technol-
ogy and, more particularly to a system and method for a thin
hypervisor for native execution of an unsafe code that sub-
stantially obviates one or several of the disadvantages of the
related art.

In one aspect, there is provided a system, method and
computer program product for implementing a thin hypervi-
sor. The thin hypervisor does not have any association with a
VM. The thin hypervisor serves as a wrapper over hardware
capabilities of a processor. The processor has privileged low-
level capabilities Intel VI-X (including EPT and “unre-
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stricted guests” extensions ), AMD-V (including RVI) and the
ARM has virtualization technology. Only kernel space code
can use processor virtualization capabilities. Applications
running in a sandboxed environment cannot have kernel mod-
ules. Such applications can access privileged functionality
(including kernel space functions) of OS by using formalized
and documented API only. Therefore, processor virtualiza-
tion capabilities are unavailable for using from downloaded
applications.

In order to use processor hardware capabilities and receive
root privileges, the system operates in a “super user” mode.
The VM operates in a VM environment with kernel privileges
in a user mode. A super user space is created in a safe mode.

According to the exemplary embodiment, a user space
application (or a process) is started. A user space virtualiza-
tion framework library is used. These entities are separated by
a user space and a kernel space. A thin hypervisor is imple-
mented in the kernel space. The virtual execution environ-
ment (VEE) is a non-root environment—i.e., a special mode
of'processor operation that allows unsafe code execution in an
isolated environment and gets so called VMEXits on unsafe
operations, but the isolation is guaranteed within the VM.

Hardware virtualization technology contains virtual
machine control structure (VMCS) managing non-root mode
for VEE execution and declaring unsafe operations VMExit
conditions. A properly created VEE environment is fully iso-
lated environment that code running inside non-root mode
cannot access any data and hardware of host OS.

An important aspect is implementing a very small piece of
code that is enough to create proper VEE environment to
isolate non-trusted guest code. This small piece of kernel
level code virtualizes almost nothing, and only performs
pass-through all non-trusted guest environment read/write/
set up requests from user space and returns all VMEXits to
user space without any processing in kernel space. Thus, user
space application can create and manipulate guest registers
and code state without harming host operating system. A thin
hypervisor is intermediate management layer accessed by
using simple VEE state read/write user space standardized
API. At the same time, the thin hypervisor allows full func-
tioning VMCS and guest registers state access that user space
application may prepare any kind of non-trusted guest code
and launch it in isolated non-root environment.

Additional features and advantages of the invention will be
set forth in the description that follows. Yet further features
and advantages will be apparent to a person skilled in the art
based on the description set forth herein or may be learned by
practice of the invention. The advantages of the invention will
be realized and attained by the structure particularly pointed
out in the written description and claims hereof as well as the
appended drawings.

It is to be understood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory and are intended to provide further
explanation of the invention as claimed.

BRIEF DESCRIPTION OF THE ATTACHED
DRAWINGS

The accompanying drawings, which are included to pro-
vide a further understanding of the invention and are incor-
porated in and constitute a part of this specification, illustrate
embodiments of the invention and together with the descrip-
tion serve to explain the principles of the invention.

In the drawings:

FIG. 1 illustrates a VM lifecycle, in accordance with the
exemplary embodiment;
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FIG. 2 illustrates and architecture of a system for using a
thin hypervisor, in accordance with the exemplary embodi-
ment;

FIG. 3 illustrates a flow chart for using a secure channel, in
accordance with the exemplary embodiment;

FIG. 4 illustrates a workflow of a system using a thin
hypervisor in accordance with the exemplary embodiment;

FIG. 5 illustrates an exemplary computer system where the
embodiments described herein can be implemented.

DETAILED DESCRIPTION OF THE INVENTION

Reference will now be made in detail to the embodiments
of the present invention, examples of which are illustrated in
the accompanying drawings.

The following definitions are generally used throughout
this description:

VEE—Virtual Execution Environment, a type of environ-
ment that supports program code execution, where at least a
part of the real hardware and software required for running
program code are presented as their virtual analogs. From the
point of view of the user, the code in VEE runs as if it were
running on the real computing system. An example of VEE is
a Virtual Machine (VM).

VE—Virtual Environment, for example, a Virtual Private
Server (VPS), is one type of a Virtual Execution Environment
(VEE) running on the same hardware system with a shared
OS kernel and most of the system resources, where isolation
of Virtual Execution Environments is implemented on the
namespace level.

VM—Virtual Machine, a type of an isolated Virtual Execu-
tion Environments running on the same physical machine
simultaneously. Each Virtual Machine instance executes its
own OS kernel. Support of Virtual Machines is implemented
using a Virtual Machine Monitor and/or a Hypervisor.

Hypervisor—controls software, while having the highest
privilege level for administrating hardware computer
resources and Virtual Machines.

A VEE, according to an exemplary embodiment, can be
any of a Virtual Private Server, a Virtual Machine, a Hyper-
visor-based Virtual Machine, a session of Terminal Server
Windows 2003 (or older) and a session of Citrix Presentation
Server, VMM-based VMs or hypervisor-based VMs.

Each VM can have several execution contexts with the
events that need to be logged. The contexts can be Virtual
Machines (VMs) and various applications.

According to the exemplary embodiment, a system,
method and computer program product for implementing a
thin hypervisor are provided. The thin hypervisor does not
need any association with a particular VM. The thin hypervi-
sor serves as a wrapper over hardware capabilities of a pro-
cessor to provide simple access for user space applications
and to filter harmful state modifications of hardware struc-
tures (e.g., VMCS). According to the exemplary embodiment,
a user space application (or a process) is started. A thin
hypervisor is implemented in the kernel space. These entities
are separated by auser space and a kernel space. A user space
virtualization framework library is used to provide standard-
ized API to hardware virtualization capabilities managed in
thin hypervisor. The user space application uses virtualization
framework API to manage hardware-assisted virtualization
environments. The virtual execution environment is a non-
root environment—i.e., a special mode of processor opera-
tion that allows a user to perform unsafe operations, but the
isolation is guaranteed within the VM.

Virtual Machine Control Structure (VMCS) and Virtual
Machine Control Procedure (VMCB) form the unsafe opera-
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tion exception map when the process needs to exit the isolated
non-root mode execution context. Then, VMEXITs are gen-
erated. However, the exemplary embodiment can provide a
mode where exits from the VM are not executed, and the
harmful code is forced to be executed inside the VM, or the
execution context ignores the code trying to exita VM.

The VMCS is divided into three parts—a control part, a
host part and a guest part. The thin hypervisor prohibits access
to the host part and doesn’t provide any interfaces for manipu-
lation of the host part to the user space process. Access to the
control part is filtered, and reads and writes to the guest part
are allowed. The host part describes a real processor state
when it gets the VMEXIT and determines location of the
VMEXIT handler. The user space application can create and
configure the environments for execution of the unsafe appli-
cations and so called guest operating systems. The unsafe
code is executed then under protection of the thin hypervisor
in a completely isolated context. There are no limitations on
executed code and context running in non-root mode, Real
Mode, Protected Mode (with its privileged levels divided to
user and supervisor/system levels). If an executed instruction
is allowed by the VMCS control part, it works natively in
isolated environment. Otherwise the execution fails with the
VMEXIT, the unsafe code is interrupted, the thin hypervisor
processes nothing and simply push exit to the user space for
further handling and/or virtualization and/or emulation. Note
that the use of hardware capabilities provides for the most
native code execution. If an instruction is not allowed in a
virtual execution environment, the VMEXIT is generated.
Generally, the thin hypervisor does not know about how the
VMEXIT should be processed and simply passes it to user
space application, because all cases that are prohibited for
native execution are handled there. Also, only subscribed
applications know how to handle VMEXITs. Thus, keeping
host protection, the thin hypervisor provides a way to execute
any kind of code in hardware-assisted isolated non-root mode
natively, without harming the host OS. The thin hypervisor is
very small, butitis enough to pass control between user space
application handling all unsafe cases and non-root mode run-
ning safe code natively. Parts of the thin hypervisor can be
also implemented as microcode without any overhead, analo-
gous to a hardware implementation of VMEXIT directly to
user space handler. The configurations can be implemented
by VMCS. If installation of kernel space drivers is prohibited
(e.g., on some Smartphones), the thin hypervisor allows for
extended functionality. For example, the phone is placed into
a hibernating state or the phone is turned off inside the VM.
The reactivation of the phone can be triggered from the host
OS, for example, in a safe mode (and either keeping or losing
the VM).

Inone embodiment, the host context is safe, but only allows
for loading a certain number of applications. The exemplary
embodiment can provide a safe context for an extended vari-
ety of applications. VMEXITs create considerable overhead.
According to the exemplary embodiment, each context has a
certain set of functions allowed in this context (including
exiting the context). Thus, exit from the context is always
safe, and the process switches to a safe context. The context
prohibits operations with unsafe registers or reading data
from other contexts.

According to another embodiment, the thin hypervisor can
provide means for reading and analyzing data within the
context for using anti-virus capabilities. Meanwhile, the thin
hypervisor prohibits saving data upon exiting the context. In
other words, two events are generated—*“virus present” and
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“no virus detected.” Then, the presence of a virus can be
analyzed by the system at the address of exception genera-
tion.

According to the exemplary embodiment, isolated envi-
ronments for drivers of new devices are created. For example,
an isolated environment can be created for isolation of ranges
of address spaces allocated for devices. In order to provide
safety, super user rights can be granted. This is implemented
by a system procedure of the thin hypervisor for using all
system components in a safe mode.

According to yet another exemplary embodiment, the
memory can be virtualized using nested paging (such as Intel
EPT, AMD RVI), which provides translation of the guest
physical addresses into host physical addresses. The set of
address translation tables of virtual environments with re-
mapping of addresses is used. Thus, the contexts can be
isolated without physical isolation. In one embodiment, a safe
tunnel or a thin hypervisor can be defined by a context iden-
tifier or by a table containing available address ranges and
allowed operations for certain address ranges, and allowed
argument values that can be written into registers and at the
context addresses. The thin hypervisor can have synchronous
and asynchronous interfaces. The virtual environment con-
text can be launched by passing a request for launching unsafe
code from user space context to the hypervisor.

According to the exemplary embodiment, the access to
processor hardware functions can be implemented by the
same API using different values. For example, different hard-
ware components are mapped at different physical addresses.
A hardware access function can be called from a user space
application. The driver can pass the function to the kernel
space. However, the system checks the argument value or a
range of arguments for being allowed. For example, a read/
write buffers and a device control buffer can be located in a
particular address range. A user may only have permission for
the read buffer. Calls for other addresses are declined after a
check. This structure, advantageously, simplifies translation
of calls and increases performance. Additionally, it protects
hardware from intrusions.

According to the exemplary embodiment, a software
development kit can use the drivers or part of the OS kernel
providing access to hardware-assisted virtualization capabili-
ties. A developer can check for the compatibility of a driver to
see if the driver is sufficient to accommodate system func-
tionality. If the use of system calls is not allowed, the func-
tions can be replaced by the ones compatible with the driver
or another driver can be used. Distributed applications can
have a procedure that determines the installation platform
(environment) and calls an appropriate driver. Thus, a virtu-
alized SDK framework can use different drivers for different
platforms.

According to one exemplary embodiment, a set of safe
tunnels from the user space to the kernel space is imple-
mented on the system kernel. Each of the tunnels is safe for
the system and can be used only by a single user. Shared use
of the tunnels is prohibited. A set of rules may be taken into
consideration before tuning of the tunnels.

Unsafe code running in an isolated non-root mode requires
memory access. A responsibility of user-space application is
to prepare set of memory page regions and to associate them
with ranges of unsafe code physical pages by using the thin
hypervisor API. The thin hypervisor tracks the ranges and
creates nested paging (EPT, RVI) entries to map the registered
regions. Thus, unsafe code accesses memory pages only
within the boundaries of mapped regions.

To be mapped, user space memory pages have to be locked
or wired by using correspondent host operating system kernel
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API. Locking pages reserves real physical pages under user
space buffer until an unlock operation is performed. The thin
hypervisor creates nested paging tables and write physical
page addresses to correspondent nested paging table entries.
The thin hypervisor can do mapping on demand when unsafe
code tries access correspondent page, or it can create full
non-root (guest) memory mapping right after user space
memory region registration. These behaviors are only
examples of how thin hypervisor can do the nested paging
structures preparation. Other combined methods are also pos-
sible.

Many types of user space virtual address space buffers are
allowed. The only requirement is the host OS kernel can make
locking operations and get physical pages for the buffer.
Pages allocated in pool, memory mapped files, and anony-
mous mappings can be used as unsafe code memory pages
storage.

No implementation of mmap is required—it is required for
correct remapping of the guest memory; non-anonymous
(plain) mappings can be supported, but do not need to be
supported—they are used by VMM for performance reasons
on Linux platforms.

Local storage suffers from automatic cloud syncing and
sudden out-of-space removal. The cloud syncing should be
disabled for VM files, since transferring memory images over
network is not required and will degrade performance. The
ability to disable the out-of-space killer for VM files should be
available.

Out-of-memory killer should call subscriber callback, so
that VMM has the ability to reclaim memory from the guest
OS and return to Chrome OS instead of being killed.

AF_INET type sockets are the only ones that need to be
supported. As a result, no VPN connections outside the guest
OS are allowed. For full support of the guest network, raw
socket support is required.

No API to hook USB device connections needs to be pro-
vided; no USB device interception and binding to the Virtual
Machine is allowed. Support for USB device recognition and
passing into VM is required to implement USB support.

Inter-process communication between NaCl processes is
difficult—only sockets are supported as a universal commu-
nication method.

Shared memory does not need to be supported. It is
required to share video memory between the GUI component
and the VMM itself, as well as for quick inter-process com-
munications.

No CPUID support (NaCl verifier does not allow the
CPUID instruction), but a VM requires it to verify supported
features.

The above limitations may be resolved by tunneling in
order to be able to run virtual machines.

Other requirements may be implemented for MAC App-
Store applications.

The safe tunnels can be used, for example, by AV modules
for isolation of harmful applications in a virtual context and
for launching of the drivers in an isolated virtual environment.

The virtualization requires a kernel driver or OS kernel part
for applications supporting virtual contexts to launch unsafe
code natively. However, the kernel driver cannot translate all
application calls to the system level, because some combina-
tions of the system calls can be unsafe for system operation
and can compromise the integrity of a protected data. In order
to solve this problem, the drivers supporting hardware virtu-
alization (that cannot be included into an application) are
placed into the kernel. The drivers can have configuration
settings or several drivers can be used, so each driver trans-
lates only a certain set of instructions. The thin hypervisor can
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be implemented (conceptually) as a driver or it can be imple-
mented as part of the host OS (i.e., works at kernel space level
with O ring privileges for IA-32/IA-32e or super user for
ARM, etc.).

In one embodiment, the drivers control a table of virtual-
ization instructions. Such tables have fields that can be modi-
fied only at a privileged access level. The driver is imple-
mented at the OS level. The driver supports operations with
the table regardless of the context executed by the processor.
The context does not have any direct access to the table. The
driver determines the fields of the table that can be used from
the application. Since the application does not have access to
the fields, the driver provides an API and read/write access to
the virtualization table field. For example, a set of safe fields
can be pre-determined. An additional field makes the set
unsafe.

Basic processor unsafe instruction execution in non-root
mode is controlled by Virtual Machine Control Structure
(VMCS) in case of Intel VT-x, and by Virtual Machine Con-
trol Block (VMCB) for in case of AMD AMD-V, and by
Virtualization Extensions in case of ARM architecture com-
pliant processors. The control structure contains three parts:
host, guest and control part. Through the thin hypervisor API,
auser of virtualization framework has complete access to the
guest part and limited access to the control part. The user
operates with a low-level hardware state of guest registers
located in VMCS. The thin hypervisor filters user calls to the
low-level state in order to limit access to unsafe fields (i.e.,
host state, control structure).

A user or a special procedure can decide which privileges
are granted to the application based on the selected context
and the API. A certain set of privileges can produce a higher
level of isolation of application or prohibit the use of other
non-virtualized system functions. The truncated API inter-
faces into user space via the thin hypervisor (through a
driver). The thin hypervisor provides the user space with an
access interface to the hardware virtualization capabilities via
ioctl, syscall, or VMCALL (in case of a host OS working in
unprivileged environment). On OS X the thin hypervisor is
called by using Mac OS X I0Kit 10ConnectCallXXX,
10ConnectTrapXXX or system call mechanism.

Those skilled in the art will appreciate that very small
amount of code (API) is used in the kernel driver. This code is
safe and can filter the unsafe fields. This API does not com-
promise safety of the entire host. The user does not have
access to states which can harm the host or host OS state.
Instead, the safe driver (hypervisor) performs the access.
Accordingly, the application is given hardware virtualization
capabilities and unsafe code or system guest code can be
executed inside the virtual context. The unsafe guest code can
be a virus application, or another application that requires
system privileges, or a complex guest operating system run-
ning in isolated non-root mode under thin hypervisor control.

The OS has kernel control structures VMCS/VMCB. The
objects of this structure reside in the OS kernel and have the
instructions that affect safety. Thus, a user cannot be given an
ultimate control over these instructions. The thin hypervisor
configures the host fields and does not allow for modifying
them. In one embodiment, each application or a set of appli-
cations can be provided with different virtual machines using
hardware virtualization. Thus, the application can call its own
VM, but not the other VMs. In other words, the applications
run in isolated contexts, and the operating system schedules
applications run times. Meanwhile, the virtualization is con-
trolled by user applications independently in a mutually safe
mode. The applications do not “know” who uses what VM
and cannot enter into another context because the host portion
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of'the fields in the driver is controlled by the driver. The driver
determines VMEXIT handler entry point, determine proces-
sor state when returns back from non-root guest code mode to
root thin hypervisor mode. The host writes these addresses
and states into correspondent fields of host part of VMCS/
VMCB, but hypervisor settings do not allow access to the
fields by the applications.

The registers of the processor are controlled in the same
way. Also, the user application cannot use several VMs,
which can be possible without an isolated application. In one
embodiment, some fields can be modified in bits. Some fields
can be filled with system data, but in an isolated context. For
example, a user can do whatever he wants inside the context,
but without exiting the context. In one embodiment, the user
is given a driver for modifying the system context inside the
context, because the Mac App Store does not give such privi-
leges to applications sold through it. In other words, a user is
given an API for the system configuration, but without an
access to the kernel space. The thin hypervisor performs
translation into the kernel space based on pre-set safety rules.

VMEXIT is an operation switching processor from a non-
root mode into a root mode, which may have additional argu-
ments indicating a cause of switching to the thin hypervisor
from the guest code. The argument may be implemented in
form of comments or as an additional argument, otherwise
unused or in some other form, for example, nested_vmx_
vmexit(vepu, to_vmx(vepu)—sexit_reason, vmcs_read32
(VM_EXIT_INTR_INFO), vmes_readl(EXIT_QUALIFI-
CATION)) The VMEXIT arguments corresponding to the
exit code are read into the thin hypervisor without exiting into
the user space. The guest state can be pre-fetched (based on
previous states or empirically) in order to optimize a number
of switches to the user space. According to the exemplary
embodiment, special configuration fields for exit events from
the root mode and from the VM are allocated.

A guest non-root state is reflected by values of a segment
and control registers including states of the registers before
and after exiting into the virtual context. Each context can
have a limited set of hardware functions that are allowed to be
accessed. For example, the context for multi-media applica-
tions can provide access to reading the disk at a block level for
optimizing read speed. Also, the context can provide access to
hardware decoding of the context. Meanwhile, another safe
context is responsible for populating the disk in order to
protect the file system.

According to the exemplary embodiment, the thin hyper-
visor supports a minimal required interface for access and
control of hardware acceleration. Most of the control is based
on one to one access correspondence to the guest state stored
in VMCS, access to registers’ state that are not a part of the
VMCS (i.e., GPRs, FPU/XMM/YMM, MSRs, etc.). Since
the nested paging (EPT and RVI) control mapping of guest
physical addresses into real physical addresses at the physical
page level, the virtual memory portions (guest memory) need
to belocked in the OS kernel upon being placed into hardware
structures of the nested paging.

The thin hypervisor manages correspondence of the virtual
user space areas and the guest physical areas and locks the
guest pages in a lazy mode as they are being accessed in the
guest memory. The basic thin hypervisor does not deal with
virtualization of any devices except for CPU and memory.
However, the extended version of the hypervisor can have
virtual local Advance Programmable Interrupt Controller
(APIC).

According to the exemplary embodiment, nested paging is
in order to simplify translation of the guest addresses into the
real physical addresses. Intersection of the real address spaces
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is prohibited and a context-dependent swapping can be imple-
mented in a safe mode. The EPT tables can be used accord-
ingly—a user is given access to a system address space, but
user access to other contexts is limited. This allows for using
a minimal amount of code and provides for better virtualiza-
tion.

The exemplary embodiment can be used with devices
when user applications have limited access to the kernel space
and to the physical resources, but the usability of the appli-
cation can be improved significantly. For example, it can be
used when implementing a hardware support of executable
functions such as audio, coding/decoding, data compression,
image processing, etc.

If an application does not work without hardware support
and the hardware support can only be turned on upon exiting
the application, the application selects a special driver, which
provides for safety and turns on the hardware support for
required functionality. Meanwhile, the other drivers and
unsafe functions become inaccessible. In one embodiment,
each driver can have a set of incompatible drivers that cannot
be activated together for the same context. The system can
work in one-directional mode when an application with a
driver are moved into the context and reside there for a long
time (until it crashes).

According to the exemplary embodiment, non-root con-
texts created by the thin hypervisor can be used not only for
full virtualization of a computer system (i.e., CPU, memory,
devices), but also for isolation of potentially unsafe applica-
tions and drivers. An execution context is created for the
unsafe applications and drivers where any calls outside the
context cause VMEXITS and the control is switched to con-
trol user space module. An exemplary code used in the thin
hypervisor is provided in Appendix i.

As discussed above, using hardware-assisted virtualization
requires a privileged hypervisor module running on a ring 0
and handling virtual machine control structures (VMCS) for
VMs. The privileged thin hypervisor can be implemented as
a part of the OS kernel or as a separate kernel module/driver
(i.e., for example, in case of Chrome OS it is a Linux kernel
module). There are no other ways to get privileged ring 0
permissions. To provide an effective and controlled access to
hardware-assisted processor capabilities, the exemplary
embodiment employs a simple user-space native client
(NaCl) virtualization library and a thin hypervisor kernel
module, which provides controlled limited access to VMX
capabilities, privileged guest OS registers, and guest OS
memory regions for the sandboxed user-space virtualization
solution.

The virtualization library calls the thin hypervisor kernel
module handling and filtering accesses to privileged capabili-
ties and allowing manipulations with the guest OS/non-root
mode state only. Thus, the virtualization library is the only
way to access the non-root mode, which is secure from the
root mode and the privileged mode perspective. The kernel
module is a thin intermediate privileged level module used to
launch the non-root code prepared in the user-space by the
proposed virtualization application.

The thin hypervisor simply bypasses the user-space
requests to modify VMCS fields, but filters and controls the
requests if there is a chance that they will affect or corrupt the
host state. Besides the virtualization of CPU(s), the VMs
come with a virtual platform (guest hardware) virtualization
(e.g., a virtual network adopter, a virtual USB port, etc.).
Guest hardware virtualization is implemented in the user-
space Virtual Machine Monitor running in the context of the
virtualization application. Because of the sandboxed environ-
ment, the guest devices virtualization can be very limited.

—
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10
Extending the OS API (Chrome, Apple, etc.) helps to over-
come the limitations and makes it similar to VMX capabilities
access.

A typical virtualization solution uses a multi-process
approach and consists of at least two processes:

a GUI intercepting user input and displaying graphics from

the guest OS;

a VM controller process running the guest OS. The VM
controller process works in accordance with the host OS
rules (i.e., Chrome OS, MAC, etc.) and performs the
guest platform virtualization, which includes native
execution of the guest OS code using the thin hypervisor
and the virtual machine monitor.

According to the exemplary embodiment, the proposed

solution to support virtual machines includes:

1. Thin hypervisor—a small (less than 10 KL.OC or 10,000
lines of source code) kernel module handling:

accesses to hardware assisted virtual machine control
structure (VMCS) for VMs;

non-root mode privileged access to registers that are not a
part of VMCS (FPU, MMX, XMM, YMM states);

guest memory regions mappings for VMs (associating
user-space memory pages with the guest physical
pages):

mapping guest physical pages to non-root mode by using
the hardware assisted nested paging mechanism (e.g.,
Intel EPT);

executing the native guest code in the non-root mode;

handling VMEXITs and redirecting them to the user space
virtualization routine.

2. User-space virtualization library to be called from the
user-space native client (NaCl) code. The virtualization
library is the only way to manipulate the guest OS state in the
non-root mode.

3. User-space application emulating and virtualizing the
guest OS platform behavior and using the virtualization
library to execute the guest code natively in the non-root
mode.

The thin hypervisor kernel module and the virtualization
library can be integrated with the host OS (i.e., Chrome OS,
MAC OS, etc.) to provide a common virtualization interface
for the sandboxed user-space virtualization solution.

The exemplary embodiment provides a secure kernel mod-
ule for hardware-assisted virtualization. The proposed solu-
tion consists of a privileged thin hypervisor and a user-space
virtualization library to access virtualization functions. The
privileged part must be as small and secure as possible. This
means that most of the platform virtualization code (includ-
ing the hardware-assisted virtualization structure logical
management) is implemented as a user-space code. When the
native guest code execution is required, the user-space virtu-
alization application uses the virtualization API of the virtu-
alization library by making a call to a corresponding private
interface of the thin hypervisor kernel module.

The kernel module provides the following functionality:

VMX capabilities reporting;

Nested paging tables (EPT) maintenance to translate guest
physical addresses to host addresses and vice versa;

VM CS maintenance including creating, destroying, get-
ting and setting Virtual Machine Control Structure con-
trol fields;

Physical memory allocation for VM needs;

Access to full CPU state for guest needs.

For security reasons the kernel module restricts access to a
number of critical resources, such as the physical memory or
the host part of VMCS. All critical functionality is imple-
mented inside the kernel module. The module does not obtain
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any real physical memory addresses from the user-space (it
gets the guest physical memory addresses only). The module
configures the needed VMCS registers.

According to the exemplary embodiment, the user-space
virtualization application consists of GUI and VM controller
processes (user-space VMM). The GUI module displays the
guest OS desktop content to the user, gets the keyboard and
mouse input from the user, starts the VMs and communicates
with corresponding VM controller processes via the inter-
process communication mechanisms or over the network.

The proposed solution contains a special virtualization
library. The library provides an interface to the virtualization
capabilities to be used by the NaCl-based code. The interface
acts as an intermediate and caching level between the virtu-
alization application and the thin hypervisor. An exemplary
VM lifecycle is depicted in FIG. 1.

Most of the virtualization library calls are simply for-
warded to the kernel module. To reduce a number of user-to-
kernel switches, the virtualization library has an internal
cache of the virtual CPU states. Writes to VMCS fields or
guest CPU registers can be delayed until the real guest code
execution begins. The library can also pre-fetch some values
before returning back to the caller.

The virtualization library interface has a minimal set of
functions:

Creating and destroying virtual machine instances;

Mapping, un-mapping and protecting guest memory

regions allocated by the user-space virtualization appli-
cation;

Creating and destroying virtual CPUs;

Reading VMX capabilities;

Receiving and setting virtual CPU general purpose regis-

ters;

Getting and setting virtual FPU/MMX/XMM/YMM reg-

isters;

Reading and writing the allowed model-specific registers

(MSRs);

Reading and writing the allowed VMCS fields;

Running the guest code on VCPU.

The above listed functions are sufficient to execute the
guest OS code by using the thin hypervisor. The VM control-
ler process is the user-space virtual machine monitor support-
ing the virtualization and platform emulation in the user-
space and calling an API when necessary. One of the APIs that
the user-space monitor uses is the proposed virtualization
library that provides a way to launch the guest OS code
natively by using the hardware assisted virtualization imple-
mented in the thin hypervisor kernel module. A user-space
VMM is a part of the virtualization application. It can be
implemented as a native client (NaCl) executable binary
linked with glibc.

FIG. 2 illustrates and architecture of a system for using a
thin hypervisor, in accordance with the exemplary embodi-
ment. A computer system 200 has a set of spaces isolated by
hardware. A runtime code(s) 210 is executed in a user mode.
A virtual context environment 235 is implemented in a kernel
mode. The runtime code 210 sends system function calls to
the virtual context environment(s) 235 via a thin hypervisor
(using the secure tunneling) driver 220. The driver performs
the required function using tunneling or bypassing, and the
Hypervisor provides a secure connection via bypassing or
tunneling. Both tunneled contexts cannot affect another con-
texts. Here one of the tunneled context may be the same as the
main execution environment, but with reduced functionality,
providing increased security. For example, flash memory
access or sound level control functions may be restricted in
execution environment without notification to the driver. The
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hypervisor controls VM exits and VM entries triggered by the
runtime code. A context switch 230 switches between virtual
context environments 235.

FIG. 3 illustrates a flow chart for using a secure channel, in
accordance with the exemplary embodiment. A virtual
address (VA) is generated by an application in step 310. If the
VA address is secure, the access is granted in step 350. Oth-
erwise, the VA is transmitted to a tunnel driver in step 320. If
the VA is allowed in step 330, the tunnel driver issues a
function in step 340 and access is granted in step 350. The
function can contain unsecure requests, but the environment
where it is tunneled will then perform only those actions
allowed by the Hypervisor. Otherwise, the access is denied in
step 355.

FIG. 4 illustrates a workflow of a system using a thin
hypervisor in accordance with the exemplary embodiment. A
sandbox 420 has a thin hypervisor 220 implemented on it.
Applications 442 run within a main execution environment
445. The applications 442 communicate with hardware
devices 410 using a main API 445. In case if the hardware
device is not available to the application 442, the emulated
(dummy) hardware 450 is used via inter VM interface 435.

With reference to FIG. 5, an exemplary system for imple-
menting the invention includes a general purpose computing
device in the form of a host computer 200 or the like, includ-
ing a processing unit (single core or multi-core) 21, a system
memory 22, and a system bus 23 that couples various system
components including the system memory to the processing
unit 21.

The system bus 23 may be any of several types of bus
structures including a memory bus or memory controller, a
peripheral bus, and a local bus using any of a variety of bus
architectures. The system memory includes read-only
memory (ROM) 24 and random access memory (RAM) 25. A
basic input/output system 26 (BIOS), containing the basic
routines that help transfer information between elements
within the computer 20, such as during start-up, is stored in
ROM 24.

The computer/server 200 may further include a hard disk
drive 27 for reading from and writing to a hard disk, not
shown, a magnetic disk drive 28 for reading from or writing to
aremovable magnetic disk 29, and an optical disk drive 30 for
reading from or writing to a removable optical disk 31 such as
a CD-ROM, DVD-ROM or other optical media.

The hard disk drive 27, magnetic disk drive 28, and optical
disk drive 30 are connected to the system bus 23 by a hard disk
drive interface 32, a magnetic disk drive interface 33, and an
optical drive interface 34, respectively. The drives and their
associated computer-readable media provide non-volatile
storage of computer readable instructions, data structures,
program modules and other data for the computer 200.

Although the exemplary environment described herein
employs a hard disk, a removable magnetic disk 29 and a
removable optical disk 31, it should be appreciated by those
skilled in the art that other types of computer readable media
that can store data that is accessible by a computer, such as
magnetic cassettes, flash memory cards, digital video disks,
Bernoulli cartridges, random access memories (RAMs),
read-only memories (ROMs) and the like may also be used in
the exemplary operating environment.

A number of program modules may be stored on the hard
disk, magnetic disk 29, optical disk 31, ROM 24 or RAM 25,
including an operating system 35. The computer 200 includes
a file system 36 associated with or included within the oper-
ating system 35, one or more application programs 37, 37",
other program modules 38 and program data 39. A user may
enter commands and information into the computer 200
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through input devices such as a keyboard 40 and pointing
device 42. Other input devices (not shown) may include a
microphone, joystick, game pad, satellite dish, scanner or the
like.

These and other input devices are often connected to the
processing unit 21 through a serial port interface 46 that is
coupled to the system bus, but may be connected by other
interfaces, such as a parallel port, game port or universal serial
bus (USB). A monitor 47 or other type of display device is
also connected to the system bus 23 via an interface, such as
a video adapter 48. In addition to the monitor 47, personal
computers typically include other peripheral output devices
(not shown), such as speakers and printers.

The computer 200 may operate in a networked environ-
ment using logical connections to one or more remote com-
puters 49. The remote computer (or computers) 49 may be
another computer, a server, a router, a network PC, a peer
device or other common network node, and typically includes
many or all of the elements described above relative to the
computer 200, although only a memory storage device 50 has
been illustrated. The logical connections include a local area
network (LAN) 51 and a wide area network (WAN) 52. Such
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networking environments are commonplace in offices, enter-
prise-wide computer networks, Intranets and the Internet.

When used in a LAN networking environment, the com-
puter 200 is connected to the local network 51 through a
network interface or adapter 53. When used in a WAN net-
working environment, the computer 200 typically includes a
modem 54 or other means for establishing communications
over the wide area network 52, such as the Internet. The
modem 54, which may be internal or external, is connected to
the system bus 23 via the serial port interface 46.

In a networked environment, program modules depicted
relative to the computer 200, or portions thereof, may be
stored in the remote memory storage device. It will be appre-
ciated that the network connections shown are exemplary and
other means of establishing a communications link between
the computers may be used.

Having thus described a preferred embodiment, it should
be apparent to those skilled in the art that certain advantages
of the described method and apparatus have been achieved.

It should also be appreciated that various modifications,
adaptations, and alternative embodiments thereof may be
made within the scope and spirit of the present invention. The
invention is further defined by the following claims.

APPENDIX i

// Input/output argument structures for synchronous calls of
IOConnectCallMethod/ioctl/sysctl interface
struct VmmCreateCpulnfo {

vepu_t vepulndex;
uint64_t flags;
i
struct VmmDestroyCpulnfo {
vepu_t vepulndex;
i
struct VmmMapUnmapInfo {
uint64_t virtual Address;
uint64_t guestPhysical Address;
uint64_t length;
uint64_t flags;
i
struct VmmProtectInfo {
uint64_t guestPhysical Address;
uint64_t length;
uint64_t flags;
i
struct VmmGetDirtyInfo {
uint64_t guestPhysical Address;
uint64_t length;
i
struct VmmCpuCapabilityInfo {
vepu_t vepulndex;
uint32_t capability;
i
struct VmmCpuEnableMsrInfo {
vepu_t vepulndex;
uint32_t msrNumber;
boolean_t enable;
H

// VMM_CPU_CONTROL commands identifiers

#define VMM_X86_GET_REGISTER

M(MH_GET _REGISTER) // {emd id; reg no}
#define VMM_X86_SET_REGISTER

M(MH_SET REGISTER) // {emd id; reg no; value}
#define VMM_X86_READ_VMCS

M(MH_READ_VMCS) // {emd id; field no}
#define VMM_X86_WRITE_VMCS
M(MH_WRITE_VMCS) // {emd id; field no; value}
#define VMM_X86_GET_FPSTATE512
M(MH_GET_FPSTATE512) // {cmd id}

#define VMM_X86_SET_FPSTATE512
M(MH_SET_FPSTATE512) // {cmd id; 512 bytes FPU state}
#define VMM_X86_GET_MSR
M(MH_GET_MSR)

#define VMM_X86_SET_MSR
M(MH_SET _MSR) // {emd id; msr no; value}
#define VMM_X86_GET_GUEST_TIME

// {emd id; msr no}
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APPENDIX i-continued

M(MH_GET_GUEST TIME) // {emd id; guest time value}
#define VMM_X86_RUN

M(MH_RUN) // {emd id}

struct VmmCpuCmdBuffer {

vepu_t  vepulndex;

uint64_t  cmdBuffer[ ]; // list of commands based on

VMM_X86_XXX commands

H
// 10ConnectCallMethod/ioctl/sysctl interface
enum {
// Create VCPU instance
// [in] structure VmmCreateCpulnfo: VCPU index; additional VCPU flags
// [out] error code
VMM_CPU_CREATE,
// Destroy VCPU
// [in] structure VmmDestroyCpulnfo: VCPU index
// [out] error code
VMM_CPU_DESTROY,
// Interrupt selective VCPUs native execution (generate synthetic VMEXit from
non-root mode)
// [in] (vepu_t[]) VCPUs index array
// [out] error code
VMM_CPU_INTERRUPT,
// Associate user space buffer with guest physical memory range and protect the
range in accordance to access flags
// [in] structure VmmMapUnmapInfo: user space buffer virtual address; guest
physical address; memory range size; access flags
(VMM_MEMORY_READIWRITEIEXECUTE)
// [out] error code
VMM_MAP,
// Remove guest physical memory region ties to user space buffers
// [in] structure VmmMapUnmapInfo: guest physical address; memory
range size
// [out] error code
VMM_UNMAP,
// Change protection for guest physical memory range in accordance to new
access flags
// [in] structure VmmProtectInfo: guest physical address; memory range
size; access flags (VMM_MEMORY_READIWRITEIEXECUTE)
// [out] error code
VMM_PROTECT,
// Get modified pages for the guest physical memory range since previous
getting dirty pages.
// (Dirty bits are cleared in EPT entries to mark that the dirty status has
already gotten.)
// (This is optional interface for hardware supporting EPT dirty bits, for
usage need check capability.)
// [in] structure VmmGetDirtyInfo: guest physical address; memory range
size
// [out] error code; (void*) copied dirty bit array
VMM_GET_DIRTY,
/
// Reserved for arch independent controls
/
// Get hardware feature list available to be configured by user
// [in] structure VmmCpuCapabilityInfo: VCPU index; capability number
(CAP_VMX_PINBASED, CAP_VMX_PROCBASED, CAP_VMX_PROCBASED?2)
// [out] error code; (uint64_t) capability bit mask which are available for
user configuration
VMM_CPU_X86_GET_CAPABILITY = ARCH_DEP_NO,
// Enable/disable native access to selective MSR
// [in] structure VmmCpuEnableMstInfo: VCPU index; MSR number;
native access flags
// [out] error code
VMM_CPU_X86_ENABLE MSR_NATIVE,
// Command queue based control interface to read/write VCPU relevant
state and to launch guest code in hardware assisted non-root mode.
// Command queues are used to avoid excessive user-kernel switches to
update modified state changed during user space emulation
// and prefetch state changed during native execution.
// [in] structure VmmCpuCmdBuffer: VCPU index; input command queue
with registers, FPU, and VMCS fields numbers, and VMM_X86_RUN command
// [out] error code; structure VmmCpuCmdBuffer: output command queue
with gotten values
VMM_CPU_X86_CONTROL,
i
typedef uint32_t vmid_t;
typedef uint32_t vepu_t;
typedef int vmerr_t;
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APPENDIX i-continued

// Create VMM instance, open VMM kernel service connection
vmerr_t vimm_create(vimid_t *vmid, uint64_t flags);
// Close VMM service connection
vmerr_t vmm_destroy(vmid_t vmid);
// Create VCPU instance
vmerr_t vmm_create_vepu(vmid_t vmid, vepu_t *vepu, uint64_t flags);
// Destroy VCPU
vmerr_t vimm_destroy_vepu(vmid_t vmid, vepu_t vepu);
// Memory protection flags for vimm_map( ) and vimm_protect( ) routine
enum {
VMM_MEMORY_READ = (lu<<0),
VMM_MEMORY_WRITE =(lu<<1),
VMM_MEMORY_EXECUTE = (1lu<<2),
H
// Associate user space buffer with guest physical memory range
vmerr_t vimm_map(vmid_t vmid, const void *va, uint64_t gpa, size_t size, uint64_t
flags);
// Remove guest physical memory region ties to user space buffers
vmerr_t vmm_unmap(vmid_t vmid, uint64_t gpa, size_t size);
// Protect/unprotect guest physical memory region
vmerr_t vmm_protect(vimid_t vmid, uint64_t gpa, size_t size, uint64_t flags);
// [optional] Will read dirty bits if there is correspondent capability (EPT dirty bits
support in hardware)
vmerr_t vimm_get_dirty(vmid_t vmid, uint64_t gpa, size_t size, void *dirty_bits);
// Read register from the cached state or make sync call to kext in cache miss case
vmerr_t vepu_read_register(vimid_t vimid, vepu_t vepu, uint32_t r, uint64_t *value);
// Write register to the cache, will be flushed to kext on vepu_run( ) or by
synchronious vepu_flush( )
vmerr_t vepu_write_register(vimid_t vmid, vepu_t vepu, uint32_t r, uint64_t value);
// Read VMCS field from the cached state or make sync call to kext in cache miss
case
vmerr_t vepu_read_vmes(vmid_t vimid, vepu_t vepu, uint32_t r, uint64_t *value);
// Write VMCS field to the cache, will be flushed to kext on vepu_run( ) or by
synchronious vepu_flush( )
// (VMCS fields content will be filtered in the kext additionally to avoid prohibited
state manipulation)
vmerr_t vepu_write_vmes(vmid_t vmid, vepu_t vepu, uint32_t r, uint64_t value);
// Read FPU registers from the cached state or make sync call to kext in cache miss
case
vmerr_t vepu_read_fpstate(vmid_t vimid, vepu_t vepu, void *buffer, size_t size);
// Write FPU registers to the cache, will be flushed to kext on vepu_run( ) or by
synchronious vepu_flush( )
vmerr_t vepu_write_fpstate(vmid_t vmid, vepu_t vepu, const void *buffer, size_t
size);
// Read MSR register from the cached state or make sync call to kext in cache miss
case
vmerr_t vepu_read_msr(vmid_t vmid, vepu_t vepu, uint32_t r, uint64_t *value);
// Write MSR register to the cache, will be flushed to kext on vepu_run( ) or by
synchronious vepu_flush( )
vmerr_t vepu_write_msr(vmid_t vimid, vepu_t vepu, uint32_t r, uint64_t value);
// Capability type identifier for vepu_read_capability( )
enum {CAP_VMX_PINBAS ED, CAP VMX PROCBASED,
CAP_VMX_PROCBASED? };
// Get hardware feature list available for user configuration
vmerr_t vepu_read_capability(vmid_t vimid, vepu_t vepu, uint32_t cap, uint64_t
*value);
// Enable or disable native access to MSR register from hardware assisted non-root
mode
// (Allow native access manipulation for limited MSR set only controlled by the
kext)
vmerr_t vepu_enable_msr_native(vmid_t vmid, vepu_t vepu, uint32_t r, boolean_t
enable);
// Get time of the last guest native execution (in nanoseconds)
vmerr_t vepu_get_guest_time(vmid_t vmid, vepu_t vepu, uint64_t *time);
// Flush updated VCPU state from the cache to hardware structures, run guest code
native execution in non-root mode, prefetch selective VCPU state
// (Do synchronous VMM_CPU_X86_CONTROL call to the kext.)
vmerr_t vepu_run(vmid_t vmid, vepu_t vepu);
// Interrupt selective VCPUs native execution to generate VMEXit and exit to user
space completing vepu_run( )
vmerr_t vepu_interrupt(vimid_t vimid, vepu_t* vepus, size_t vepu_count);
// Flush updated VCPU state (registers, VMCS fields, MSRs) from library cache to
hardware structures in kernel
vmerr_t vepu_flush(vmid_t vmid, vepu_t vepu);
// end

18
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What is claimed is:

1. A system for native execution of unsafe code, the system
comprising:

a host system separated into a user space and a kernel

space;

at least one VM running in the host system;

a Guest OS running on the VM;

at least one Guest application executed on the Guest OS;

athin hypervisor implemented on the kernel space within a

sandbox;

wherein:

the thin hypervisor is configured to control execution of
the Guest application,

the thin hypervisor communicates with the Guest appli-
cation using a virtualization library;

the thin hypervisor is configured to intercept a VMEXIT
generated by an unsafe instruction of the Guest appli-
cation;

the thin hypervisor filters the Guest application instruc-
tions in order to protect integrity of the host system;

the thin hypervisor includes a secure tunnel configured
to filter virtual addresses; and

the thin hypervisor analyzes requests to modify VMCS
fields in order to protect integrity of a host state.

2. The system of claim 1, wherein the thin hypervisor
includes a secure tunnel driver.

3. The system of claim 1, wherein the virtualization library
is an application programming interface.

4. The system of claim 1, wherein the thin hypervisor
translates Guest memory page addresses into physical
memory addresses.

5. The system of claim 4, wherein the thin hypervisor
controls memory using nested paging.

6. The system of claim 1, wherein the user space has a
limited set of allowed interfaces and addition of an extra
interface indicates a presence of unsafe code.

7. The system of claim 1, wherein the kernel space has a
limited set of system interfaces and addition of an extra inter-
face indicates a presence of unsafe code.

8. The system of claim 1, wherein an unsafe application is
executed in the sandbox, the sandbox being configured to
emulate the system interface and the user interface.

9. The system of claim 8, wherein safe user interfaces are
pushed into the user space.

10. The system of claim 8, wherein the system interfaces
are emulated without execution outside of a context.

11. The system of claim 1, wherein the thin hypervisor is
implemented in microcode.

12. The system of claim 1, wherein the thin hypervisor is
defined by a context identifier.

13. The system of claim 1, wherein the thin hypervisor is
defined by a table containing available address ranges.
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14. The system of claim 13, wherein the thin hypervisor is
defined by allowed operations for certain address ranges and
by allowed argument values that can be written into registers
at the context addresses.

15. The system of claim 1, wherein the virtualization
library executes any of:

creating and destroying virtual machine instances;

mapping, un-mapping and protecting guest memory

regions allocated by a user-space virtualization applica-
tion;

creating and destroying virtual CPUs;

reading VMX capabilities;

receiving and setting virtual CPU general purpose regis-

ters;

getting and setting virtual FPU/MMX/XMM/YMM regis-

ters;

reading and writing allowed model-specific registers

(MSRs);

reading and writing allowed VMCS fields; and

running guest code on the VCPU.

16. The system of claim 1, wherein the thin hypervisor has
a synchronous interface.

17. The system of claim 1, wherein the thin hypervisor has
an asynchronous interface.

18. A computer-implemented method for native execution
of unsafe code, the method comprising:

dividing a host system separated into a user space and a

kernel space;

launching at least one VM on the host system;

instantiating a Guest OS running on the VM;

starting a Guest application on the Guest OS;

activating a thin hypervisor implemented on the kernel

space within a sandbox;

initializing a virtualization library;

controlling the Guest application by the thin hypervisor

using the virtualization library;

intercepting VMEXITs caused by unsafe instructions of

the Guest application;

creating a secure tunnel configured to filter virtual

addresses of the instructions;

filtering the Guest application instructions;

analyzing requests to modify VMCS fields to protect integ-

rity of a host state; and

emulating system instructions without execution.

19. The method of claim 18, further comprising analyzing
for presence of a virus at an address of an exception genera-
tion.

20. The method of claim 19, further comprising creating a
super user space for implementing the thin hypervisor.
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